
8

Embedding Formal Performance Analysis into the Design Cycle
of MPSoCs for Real-Time Streaming Applications

KAI HUANG, WOLFGANG HAID, IULIANA BACIVAROV, MATTHIAS KELLER,
and LOTHAR THIELE, ETH Zurich

Modern real-time streaming applications are increasingly implemented on multiprocessor systems-on-chip
(MPSoC). The implementation, as well as the verification of real-time applications executing on MPSoCs,
are difficult tasks, however. A major challenge is the performance analysis of MPSoCs, which is required for
early design space exploration and final system verification. Simulation-based methods are not well-suited for
this purpose, due to long runtimes and non-exhaustive corner-case coverage. To overcome these limitations,
formal performance analysis methods that provide guarantees for meeting real-time constraints have been
developed. Embedding formal performance analysis into the MPSoC design cycle requires the generation of a
faithful analysis model and its calibration with the system-specific parameters. In this article, a design flow
that automates these steps is presented. In particular, we integrate modular performance analysis (MPA)
into the distributed operation layer (DOL) MPSoC programming environment. The result is an MPSoC
software design flow that allows for automatically generating the system implementation, together with an
analysis model for system verification.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-
Time and Embedded Systems—MPSoC; C.4 [Performance of Systems]: Measurement Techniques; D.2.8
[Metrics]: Performance Measures

General Terms: Performance, Design

Additional Key Words and Phrases: Multiprocessors, modular performance analysis, performance analysis,
design automation

ACM Reference Format:
Huang, K., Haid, W., Bacivarov, I., Keller, M., and Thiele, L. 2012. Embedding formal performance analysis
into the design cycle of MPSoCs for real-time streaming applications. ACM Trans. Embedd. Comput. Syst.
11, 1, Article 8 (March 2012), 23 pages.
DOI = 10.1145/2146417.2146425 http://doi.acm.org/10.1145/2146417.2146425

1. INTRODUCTION

To handle the ever-increasing requirements of real-time streaming and signal-
processing applications, embedded systems are shifting from uniprocessor designs to-
wards multiprocessor systems-on-chip (MPSoC). While offering high-scale integration,
high computing power, and low power consumption, MPSoCs are characterized by their
complexity and a large design space. Therefore, performance analysis is required during
the entire design trajectory to supply the system designer with the quantitative data
underlying the design decisions. In this context, formal performance analysis meth-
ods are particularly useful. In contrast to simulation, which is presumably the most
widely used method for performance analysis, formal methods enable fast estimations,

Authors’ addresses: K. Huang, W. Haid, I. Bacivarov, M. Keller, and L. Thiele, Computer Engineering Group,
ETH Zurich, Switzerland, CH-8092; email: haidw@tik.ee.ethz.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/03-ART8 $10.00

DOI 10.1145/2146417.2146425 http://doi.acm.org/10.1145/2146417.2146425

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:2 K. Huang et al.

provide coverage of all corner-cases, and allow for giving real-time guarantees. Exam-
ples of such formal performance analysis frameworks are modular performance analy-
sis (MPA) [Wandeler et al. 2006], symbolic timing analysis for systems (SymTA/S) [He-
nia et al. 2005], and holistic scheduling analysis MAST [González Harbour et al. 2001].

A key factor for the successful application of formal performance analysis is
automation, that is, requiring the appropriate tool support for model generation, cal-
ibration, and evaluation. Automation can only be achieved if performance analysis is
treated as a “first-class citizen” during the entire design flow. The contribution of this
article is a design flow realizing this idea. In particular, MPA is integrated into the
distributed operation layer (DOL) [Thiele et al. 2007], which is an MPSoC program-
ming environment based on dataflow process networks [Lee and Parks 1995] targeted
at real-time streaming applications. This integration is done in two steps. First, based
on the same system specification as used for system software synthesis, an MPA model
is generated and calibrated. This requires knowledge about system modeling, as well
as tool support for obtaining the required parameters. Second, the analysis model is
evaluated to obtain the performance metrics of interest, which requires a concrete
implementation of the analysis model. In our design flow, we use the freely available
MPA Matlab toolbox [Wandeler and Thiele 2006c] for that purpose. Because an MPA
model of a typical MPSoC can be evaluated within the range of seconds, the proposed
approach can be used to analyze a single system, as well as multiple systems, during
design space exploration. A prototype implementation of the design flow is used to
demonstrate the viability of the approach for several applications, including a video
(motion JPEG) and an audio application (wave field synthesis).

This article is based on the work described in Haid et al. [2009], in which synchronous
dataflow [Lee and Messerschmitt 1987] was considered in which the number of tokens
consumed and produced in each activation (firing) of an actor is constant. By using so-
called consumption and production curves, this work is extended to dataflow process
networks in which the number of tokens consumed and produced in each activation of
an actor may vary due to data or state dependencies. Therefore, being able to model
this variability allows for the application at the proposed approach for a larger class of
applications. Also, so-called workload curves [Maxiaguine et al. 2004] are used to char-
acterize the execution demand of actors, rather than using simple best-case/worst-case
execution times. Due to this tighter characterization, over-approximations are reduced,
and tighter results can be obtained. Furthermore, a different MPSoC platform is used in
this article, and the overhead of the real-time operating system is taken into considera-
tion, demonstrating the generality of the proposed design flow. In addition, this article
gives more details on the technical aspects and contains a richer set of experiments.

The remainder of this article is structured as follows. First, related work is reviewed
in Section 2, and the background of our work is presented in Sections 3 and 4 by de-
scribing the DOL design flow and the MPA framework, respectively. Section 5 describes
the class of considered MPSoCs and how they can be modeled in MPA. In Sections 6 and
7, the automated generation and calibration of formal performance analysis models for
this class of MPSoCs is presented. Finally, the viability of the approach is demonstrated
with several applications in Section 8, and conclusions are drawn in in Section 9.

2. RELATED WORK

Many model-based frameworks have been developed for the design of multiprocessor
embedded systems; see Densmore et al. [2006] and Gerstlauer et al. [2009] for com-
prehensive surveys. One can observe that the most widely used approach for system
performance analysis in these frameworks is simulation-based methods. Unfortunately,
simulation suffers from long runtimes and high setup efforts for each new architec-
ture and mapping. Worst-case bounds of system properties, such as throughput and

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:3

end-to-end delay, are difficult to obtain, because corner cases of the execution are
difficult to identify, due to the overall complexity of today’s systems. Focusing on
model-based frameworks based on dataflow process networks, the two frameworks
most closely related to DOL are Artemis [Pimentel et al. 2006] and Koski [Kangas
et al. 2006]. In these frameworks, performance estimation is also done by simulation
at different levels of abstraction.

To achieve shorter runtimes for simulation-based methods, approaches that combine
simulation and analysis have been proposed. Lahiri et al. [2001] proposed a hybrid
trace-based simulation methodology for on-chip communication exploration. Künzli
et al. [2006] developed a technique that replaces single subsystems in a simulator with
a corresponding MPA model. Although these mixed methodologies can help shorten the
runtime of simulations, the problem of insufficient corner-case coverage still remains.

Instead of simulation, we use a formal method for performance analysis whose inte-
gration into a complete design cycle has received much less attention. So far, work in
this direction has been mainly done in the domain of (best-effort) networking systems.
In that domain, layered queuing networks [Petriu et al. 2000], Petri nets [Woodside
2007], or state-based formalisms [Viehl et al. 2006] have been derived from synthe-
sizable specifications, such as the ITU-T specification and definition language (SDL).
Balsamo et al. [2004] provide a survey, illustrating how these methods are integrated
into the software development process. In the domain of heterogeneous multiprocessor
systems, the UML-MAST tool can generate a model for holistic scheduling based on a
system model described in the UML profile for schedulability, performance, and time
(SPT) [González Harbour et al. 2001]. However, since UML-SPT models are, in gen-
eral, not synthesizable, the question of how to automatically obtain the required model
parameters remains open.

The second central aspect of this article is model calibration, which is a well-known
technique in many modeling and simulation domains. In the context of MPSoC design
and analysis, calibration has been applied for low-level models, such as cycle-accurate
simulation [Black and Shen 1998], as well as for high-level models, such as trace-based
simulation [Pimentel et al. 2008] (in the Artemis framework) or task graphs [Kangas
et al. 2006] (in the Koski framework), for instance. The calibration of formal perfor-
mance analysis models has only been addressed to a very limited extent. The reason
being that formal performance analysis has been mainly applied during early design
space exploration, where estimation, rather than calibration, is used to determine
model parameters, because an actual implementation might not be available at early
design stages.

3. DOL PROGRAMMING ENVIRONMENT

For implementing parallel applications on an MPSoC platform, the distributed
operation layer (DOL) programming environment [Thiele et al. 2007] is used. The DOL
is a platform-independent MPSoC programming environment targeted at real-time
streaming and (array) signal-processing applications. It is based on the dataflow pro-
cess network model of computation [Lee and Parks 1995] and provides source-to-source
code generators to efficiently execute DOL applications on different MPSoC platforms.
Concretely, the supported platforms are the MPARM platform [Benini et al. 2005], the
Sony/Toshiba/IBM Cell BE [Kahle et al. 2005], and the Atmel DIOPSIS 940 [Paolucci
et al. 2006].

Following the X-chart paradigm [Gerstlauer et al. 2009], the DOL environment not
only distinguishes between the system application and architecture specifications but
also between the system implementation and the corresponding performance analysis
model, which are both derived from the same specification. Figure 1 gives an overview
of the DOL environment. The design cycle starts with a system specification consisting

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:4 K. Huang et al.

application
specification

(XML & C)

mapping
specification

(XML)

architecture
specification

(XML)

functional
simulation
generation

simulation on
workstation

platform-
dependent code
generation (SW

synthesis)

simulation on
virtual platform /

execution on
physical platform

evaluation on
workstation

formal
model

generation

p
erfo

rm
an

ce d
ata

calibration data
extraction and

back-
annotation

Fig. 1. Overview of the DOL programming environment. The contributions of this article are indicated by
the shaded boxes: generation and calibration of formal performance analysis models.

of an application, an architecture, and a mapping specification. The application spec-
ification based on the dataflow process network model of computation is platform-
independent and needs to be related to a concrete architecture by explicit mapping.
Further details on the DOL specification are given later in this section.

The second step in the design flow is the automated generation of a functional
simulation of the application. The functional simulation allows for testing and debuging
the parallel application code with standard debugging tools on a standard workstation.
Specifically, we use the SystemC simulation engine and gdb.

Once the application is functionally correct, it can be mapped onto the target
platform. Based on the architecture and the mapping specification, software synthesis
generates the corresponding binaries. This basically involves the generation of
mapping-dependent source code for the processors, compilation, and the linking to
the platform-specific libraries and runtime environment. The generated binaries
can either be executed on a simulator of the target platform (available for MPARM,
Cell BE, and DIOPSIS 940) or on the real MPSoC (Cell BE and DIOPSIS 940).

The DOL design flow described so far is similar to related design flows, such as
Artemis [Pimentel et al. 2006] or Koski [Kangas et al. 2006]. The unique feature of
the DOL design flow is the embedding of formal performance analysis, namely MPA,
into the design cycle, as shown in Figure 1. The generation and calibration of MPA
models will be explained in detail in Sections 6 and 7. Because applications can be
typically mapped onto MPSoCs in different ways, the DOL provides tools that support
the developer in exploring the performance of several mappings and choosing the most
suited one. For detailed explanations about the used exploration techniques, we refer to
Thiele et al. [2007]. Finally, the DOL programming environment features a graphical
frontend enabling an easy system specification. Figure 2(a) displays a snapshot of
the graphical environment in which a simple parallel application consisting of three
processes connected via communication channels is mapped to MPARM.

The rest of this section presents some details of the DOL programming model for
applications, the specification of architectures, and the mapping of applications to
architectures.

3.1. Application Programming Model

To model streaming applications, the dataflow process network model of computa-
tion [Lee and Parks 1995], a subclass of Kahn process networks [Kahn 1974], has been
adopted in the DOL design flow. The dataflow model assumes a network of concurrent
and autonomous actors communicating in a point-to-point fashion via unbounded first
in, first out channels.

Using the dataflow model for programming MPSoCs is beneficial from the per-
spectives of software development, synthesis, and analysis. With respect to software

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

gary
下划线

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:5

P1 C1 P2

’ ’

C2

’

P3
’

RTC

RTC

’

’

P1 C1 P2 C2 P3

ARM 0 ARM 1 ARM 2 ARM 3

BUS

(a) (b) (c)

50 10 15 20
0

1

2

3

5

time interval Δ [ms]

n
u

m
b

er
 o

f
ev

en
ts

 [
1]

50 10 15 20
0

20

time interval Δ [ms]

n
u

m
b

er
 o

f
10

6
cy

cl
es

 [
1]

105 15 20
time interval Δ [ms]

n
u

m
b

er
 o

f
10

6
cy

cl
es

 [
1]

50 10 15 20
time interval Δ [ms]

n
u

m
b

er
 o

f
ev

en
ts

 [
1]

5

10

15
4

0

1

2

3

5

4

0
0

20

5

10

15l

u

’l
’u

l

u

’l
’u

(d)

β
β ββ

α
α

α β β
ββα

Fig. 2. (a) Screenshot of the graphical frontend of DOL showing a simple dataflow process network con-
sisting of three actors mapped to MPARM. (b) (Automatically generated) MPA model of this system where
preemptive fixed-priority scheduling is used on all resources. (c) Greedy processing component for modeling
the actor P2 in MPA. (d) Input and output arrival and service curves of the greedy processing component
modeling P2.

development, the dataflow model directly exposes the available data and functional
parallelism in an application, enabling the efficient parallelization of algorithms.
Moreover, the dataflow model is in line with established software engineering practices
by ensuring compositionality of actors, because every actor completely encapsulates
its own state, together with the code that operates on it. This facilitates code reuse
and the development of modular, scalable applications. With respect to software
synthesis, the essential property of the dataflow model is its determinism, that is,
the result of a computation depends only on the provided input and not on the timing
of different processes or their communication. Requiring no global synchronization,
the only platform-specific elements to implement are first in, first out channels and a
mechanism for executing multiple actors on a processor (if multiple actors need to be
executed on each processor). Finally, with respect to system analysis, the modularity
and the explicit separation of computation and communication enable a modular
generation and calibration of the analysis model.

The dataflow model can be seen as a coordination model which allows for the con-
sideration the programming of a parallel system as the combination of two distinct
activities: the computation comprising a number of processes involved in manipulating
data and the coordination describing the connections of processes. To specify dataflow
applications, DOL uses two distinct languages, namely C/C++ to program actors and
XML for describing the topology of the dataflow process network. Examples for both are
shown in Listing 1 and Listing 2. The choice of these languages has pragmatic reasons,
as using C/C++ allows to reuse of existing legacy code, and XML is easy to handle, due
to the large number of available tools. Alternative choices for the application specifi-
cation would be domain-specific languages, such as Simulink or StreamIt [Thies et al.
2002] or other modeling languages, such as UML.

3.2. Architecture and Mapping Modeling

The modeling of an architecture in DOL is done at an abstract level, the granularity
of which depends on the refinements that take place during the software synthesis for

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:6 K. Huang et al.

Listing 1. The XML source code of the dataflow pro-
cess network in Figure 2(a).

1 <process name="p1">
2 <port type="output" name="out"/>
3 <source type="c" location="p1.c"/>
4 </process>
5
6 <process name="p2">
7 <port type="input" name="in"/>
8 <port type="output" name="out"/>
9 <source type="c" location="p2.c"/>

10 </process>
11
12 <process name="p3">
13 <port type="input" name="in"/>
14 <source type="c" location="p3.c"/>
15 </process>
16
17 <channel name="c1">
18 <source name="p1" port="out"/>
19 <target name="p2" port="in"/>
20 </connection>

21
22 <channel name="c2">
23 <source name="p2" port="out"/>
24 <target name="p3" port="in"/>
25 </connection>

Listing 2. C code of the actor P2 in Figure 2(a). For each
invocation (FIRE), P2 reads a float from its input, squares
it, and sends the result to its output.

1 //process handler (constructor)
2 DOLProcess P2 = {
3 &P2 state,
4 P2 init,
5 P2 fire
6 };
7
8 void P2 init(DOLProcess *p) {
9 //nothing to do

10 }
11
12 void P2 fire(DOLProcess *p) {
13 float i;
14
15 DOL read((void*)PORT IN, &i,
16 sizeof(float), p);
17 i = i * i;
18 DOL write((void*)PORT OUT, &i,
19 sizeof(float), p);
20 }

a specific target architecture. The DOL architecture specification consists of basic sys-
tem components, their attributes, and the way they are connected, that is, computation
resources like programmable processors and hardware IPs, or communication compo-
nents like buses and NoCs. Figure 2(a), for instance, represents a simplified view of the
MPARM architecture. This specification gets more complex when further architectural
features are considered during software synthesis. An example are several commu-
nication possibilities, such as CPU-driven transfers or transfers via a direct memory
access (DMA) controller.

The mapping describes the binding of processes and software channels to architec-
ture components and the scheduling on shared resources. For example, scheduling
policies like time-division multiple access, (non-)preemptive fixed priority, or earliest
deadline first and the corresponding parameters, can be specified.

Customized XML schemata are used for describing the format of architecture and
mapping specifications. These specifications are used as inputs for both software syn-
thesis and analysis model generation.

4. MODULAR PERFORMANCE ANALYSIS

In the domain of real-time streaming and digital signal-processing applications, pow-
erful abstractions have been developed to model and analyze distributed systems. The
framework used in this article is modular performance analysis (MPA) [Wandeler et al.
2006]. With MPA, hard upper and lower bounds can be computed for various perfor-
mance criteria in a real-time system, such as end-to-end delays, buffer requirements,
or resource utilization. Hence, MPA qualifies for the analysis of hard real-time systems.
This clearly distinguishes MPA from any probabilistic performance analysis method
and from performance estimation by simulations.

Basically, the analysis of real-time systems requires knowledge about the best-case
and worst-case behavior of the system, in all operating conditions. In MPA, a com-
positional approach is employed to tackle this problem. A system is split up into
small components, with no or little interference, that are characterized independently

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:7

from each other. To characterize the components in terms of best-case and worst-case
behavior, data sheets, exhaustive simulation, or formal methods can be used, as will be
shown in Section 7. Afterwards, the interference of components is modeled to globally
analyze a system. This takes into account the interaction of software and hardware
components with respect to data dependencies, operating system overhead, or resource
sharing, as described next.

Concretely, the MPA model of a system is composed of abstract elements that model
(a) event streams that carry data and trigger actors, (b) the computation and communi-
cation of an application, (c) resources such as processors and interconnects, and (d) re-
source sharing methods. The approach uses real-time calculus (RTC) [Chakraborty
et al. 2003], which itself is based on the theoretical framework of network calcu-
lus [Le Boudec and Thiran 2001]. In particular, arrival curves α(�), service curves
β(�), and workload curves γ (�) model timing properties of event streams, the ca-
pability of architecture elements, and the execution requirements of event streams,
respectively, as shown in Figure 2(c). Abstract components define the semantics of task
execution and resource sharing in the system. A short description of these elements is
given next. For further details, we refer to Wandeler et al. [2006].

4.1. Event Stream Model

Event streams in a system can be described using a cumulative function R(s, t), defined
as the number of events seen in the time interval [s, t). While any R always describes
one concrete trace of an event stream, a tuple α(�) = [αu(�), αl(�)] of upper and lower
arrival curves provides an abstract event stream model that characterizes a whole
class of (nondeterministic) event streams. αu(�) and αl(�) provide an upper and a
lower bound on the number of events seen on the event stream in any time interval of
length �:

αl(t − s) ≤ R(s, t) ≤ αu(t − s) ∀s < t s, t ∈ R
+, (1)

with αl(�) = αu(�) = 0 for � ≤ 0. Arrival curves substantially generalize traditional
event models, such as sporadic, periodic, periodic with jitter, or any other arrival pat-
tern, with deterministic timing behavior. Therefore, they are suited to represent the
complex characteristics of event streams in real MPSoCs. In Figure 2(d), for instance,
α represents the arrival curves for a periodic stream, whereas α′ represents the arrival
curves of a periodic stream with jitter.

4.2. Resource Model

In a similar way, the capability of computation or communication resources can be
described by a cumulative function C(s, t), defined as the number of available resources,
that is, processor or bus cycles, in the time interval [s, t). To provide an abstract
resource model that models a whole set of possible resource behaviors, a tuple β(�) =
[βu(�), βl(�)] of upper and lower service curves is defined as

βl(t − s) ≤ C(s, t) ≤ βu(t − s) ∀s < t s, t ∈ R
+, (2)

with βl(�) = βu(�) = 0 for � ≤ 0. Again, service curves substantially generalize
classical resource models, such as the bounded delay or the periodic resource model. In
Figure 2(d), β represents the service curves for a bounded delay resource, whereas β ′
represents the irregular service that would be left for a task with lower priority.

4.3. Workload Model

To relate arrival and service curves, workload curves are used [Maxiaguine et al. 2004].
The workload that an actor imposes on a resource can be described by a cumula-
tive function W(s, t), defined as the number of clock cycles required to process t − s
consecutive events on a computation or communication resource. We define a tuple

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:8 K. Huang et al.

γ (e) = [γ u(e), γ l(e)] of upper and lower workload curves as:

γ l(t − s) ≤ W(s, t) ≤ γ u(t − s) ∀s < t s, t ∈ N0. (3)

In the context of MPA, the arrival curve is event-based, whereas the service curve is
resource-based. Using the workload curve and its pseudoinverse,

(γ u)−1(w) = sup{e : γ u(e) ≤ w} (γ l)−1(w) = inf{e : γ l(e) ≥ w}, (4)

Equations (5) and (6) describe how arrival and service curves can be transformed from
event-based to resource-based quantities and vice versa, as shown in Figure 2(c).

ᾱl(�) = γ l(αl(�)
)

β̄l(�) = (γ u)−1(βl(�)
)
, (5)

ᾱu(�) = γ u(αu(�)
)

β̄u(�) = (γ l)−1(βu(�)
)
. (6)

In the simplest case, the workload of an actor is characterized by its worst-case
(WCET) and best-case execution time (BCET), measured in clock cycles. In this case,
the workload curves would simply be

γ l (e) = BCET · e [cycles] (γ l)−1 (x) = �x/BCET� [events], (7)

γ u (e) = WCET · e [cycles] (γ u)−1 (x) = 	x/WCET
 [events]. (8)

4.4. Actor Model

In MPA, actors that are executed on processors are modeled as greedy processing
components (GPC). The semantics of a GPC can be described as follows. An incoming
event stream, represented as an upper and a lower arrival curve, flows into the first
in, first out input buffer of the GPC. The events trigger an actor whose execution is
restricted by the availability of the resource, represented by an upper and a lower
service curve. The output event stream can again be represented as an upper and a
lower arrival curve, while the remaining resource capacity can be represented as an
upper and a lower service curve. As has been shown in Chakraborty et al. [2003], the
output arrival curves α′ can be computed by Equations (9) and (10). Similarly, relations
for the output service curve β ′ can be computed as

α′l(�) = min
{

inf
0≤μ≤�

{
sup
λ>0

{αl(μ + λ) − β̄u(λ)} + β̄l(� − μ)
}
, β̄l(�)

}
, (9)

α′u(�) = min
{

sup
λ>0

{
inf

0≤μ<λ+�
{αu(μ) + β̄u(λ + � − μ)} − β̄l(λ)

}
, β̄u(�)

}
. (10)

Local quantities describing a component’s performance can be derived analogously.
For example, an upper bound of the maximum delay dmax experienced by an event
and the maximum backlog (buffer fill level) bmax at a GPC are given by the following
relations; see also Le Boudec and Thiran [2001].

dmax = sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ + τ)}} , (11)

bmax = sup
λ≥0

{αu(λ) − βl(λ)}. (12)

4.5. Performance Analysis

At this point, we know how to model event streams and computation and communica-
tion resources, as well as single HW/SW components (actors). In order to analyze the
performance of an entire system, an abstract performance model needs to be built. To
obtain this model, all event streams are modeled by arrival curves, and all computa-
tion and communication resources by service curves, as well as all actors in the system

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:9

GPC

GPC

’

’’

’

’

EDF

’

’

’

TDMA

GPC

GPC

’

’

slot2slot1

’slot2’slot1

Fig. 3. Modeling of different scheduling policies in MPA. From left to right: preemptive fixed priority, earliest
deadline first, and time division multiple access scheduling.

by GPCs. This way, one can analyze distributed systems with any number of shared
computation and communication resources. Resource-sharing policies currently sup-
ported by MPA include (non-)preemptive fixed-priority scheduling (FP) [Wandeler et al.
2006; Haid and Thiele 2007], rate monotonic scheduling (RM) [Wandeler et al. 2006],
time division multiple access (TDMA) [Wandeler and Thiele 2006b], earliest deadline
first (EDF) [Wandeler and Thiele 2006a], and first-come first-serve (FCFS) [Perathoner
et al. 2010]; see Figure 3.

By correctly interconnecting all arrival and service curves, one obtains the perfor-
mance analysis model of a system, as shown in Figure 2(b). Based on the local analysis
of single components, global system properties (such as end-to-end delays, total buffer
requirements, system throughput, and others) can be computed.

Tool support for MPA is available as a Matlab toolbox that implements the basic
operations from real-time calculus [Wandeler and Thiele 2006c]. Based on these op-
erations, the Matlab toolbox provides methods for curve generation, implements the
analysis for the scheduling policies just mentioned, and provides support for plotting
arrival and service curves.

Finally, taking state information into account would sometimes allow for improving
the analysis, because safe (but overly pessimistic) assumptions could be relaxed us-
ing this knowledge. Hence, first techniques that combine stateful models (finite state
machines or timed automata) with compositional methods have been proposed; see
Lampka et al. [2010] and the references therein, for instance. Automated generation
and calibration of models that are amenable to these techniques are beyond the scope
of this article, however.

5. MODELING MPSOCS IN MPA

In the previous section, the basic abstractions and modeling elements of MPA have
been reviewed. Concepts like event streams and processing components match well the
basic behavior of a distributed system. They are also sufficient for modeling systems
during early design space exploration. For accurately modeling real MPSoCs, however,
a basic model, such as the one shown in Figure 2(b), is too simplistic, Actors only have
a single input and output, token production and consumption rates are constant, and
the operating system overhead is neglected.

By extending the MPA concepts introduced in the previous section, this section shows
how an MPSoC can be modeled in MPA. It is assumed that all the data for doing so are
already available, that is, calibration has already been performed (see Section 7). This
section is limited to dataflow process networks modeled in the framework of DOL and
executing on MPARM [Benini et al. 2005]. Even using extensions of MPA, however, not
all systems that can be modeled in DOL (and implemented on MPARM using DOL’s

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:10 K. Huang et al.

bus

ARM tile NARM tile 1

ARM
core

scratchpad
memory

DMA
controller

MMS

ARM
core

scratchpad
memory

MMS

DMA
controller

instruction
and data
memory

instruction
and data
memory

Fig. 4. Block diagram of the considered MPARM architecture. The blocks labeled with “M” and “S,” respec-
tively, denote master and slave ports on the bus.

software synthesis backend) and can be analyzed using MPA. Therefore, this section
also describes the class of systems that can be currently modeled and analyzed in our
implementation of the model generation and calibration framework. Note that due to
the compositionality of MPA, incorporating new analysis techniques to extend the scope
of systems is possible. Thus, the proposed framework is not limited by the difficulty of
integrating new techniques for MPA, but rather by the difficulty of developing these
techniques.

5.1. Hardware/Software System

A hardware/software platform amenable to compositional analysis should keep the
interference between components to a minimum and allow for a tight characterization
of components. Clearly, this should not overly sacrifice system performance or increase
the cost of the system. In the following, an MPARM architecture and the according
runtime environment for DOL applications that have been designed with these goals
in mind are described. MPARM has a distributed memory architecture that is typical for
MPSoCs and has been implemented as a cycle-accurate simulator. MPARM consists of a
set of fully programmable ARM tiles and a shared interconnect, as shown in Figure 4.
The platform can be easily configured in different ways. We used the configuration
described in the following to reduce the interference between tiles, between the actors
executing on each tile, and between computation and communication.

In MPARM, each tile has its own local program and data memory, such that it
can operate independently from the other tiles. The interference between tiles is thus
limited to data transfers triggered by the application. RTEMS (real-time executive for
multiprocessor systems) [RTEMS Steering Committee 2010] is used as the real-time
operating system. The actors of a DOL application that are bound to each tile are
implemented as RTEMS tasks. The channels of a DOL application are implemented
as RTEMS message queues. In the analysis, the booting of the system is neglected.
Afterwards, a steady-state operation is reached, during which RTEMS merely reacts
to interruptions caused by communication events and switches between tasks. During
steady-state operation, the only processing cost caused by the real-time operating
system is thus the context-switching overhead, which is explicitly modeled as shown
in Section 5.4. Further activities performed by RTEMS could be modeled as separate
tasks in the analysis model.

To reduce the interference between actors executing on the same tile, caches are
disabled, and processors read instructions and data directly from a local (scratchpad)
memory. This is, for instance, also the case for the Sony/Toshiba/IBM Cell BE [Kahle
et al. 2005], in which the eight synergistic processing elements do not have a cache.
Similarly, the DSP subsystem on the Atmel DIOPSIS 940 does not have a cache either
[Paolucci et al. 2006]. This way, the execution time of actors does not depend on the

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:11

1

RTC

RTC2

3

RTC
AND

′1

′2

′

Fig. 5. Multiple-input multiple-output GPC to model the actor shown in Listing 3.

cache, which is influenced by other actors running on the same processor and their
scheduling, resulting in tighter bounds of the best-case/worst-case execution time. Of
course, using the memory hierarchy by enabling caches usually improves the average
case behavior substantially and may also reduce the worst-case runtimes of actors. In
this case, the technique presented in Pellizzoni and Caccamo [2007] could be used for
the worst-case performance analysis.

To reduce the interference between computation and communication, direct memory
access (DMA) controllers are used. Located at the interface between a tile and the
interconnect, a DMA controller can autonomously handle the message queue commu-
nication between actors without requiring processor resources. In addition, the DMA
controller can access the scratchpad memory in parallel and independently of the pro-
cessor. If the processor and the DMA controller mutually influenced each other, the
memory could be modeled as a separate resource.

5.2. Modeling Computation

The GPC introduced in Section 4.4 can be seen as the basic entity to model actors
of a dataflow process network. A GPC that accepts a single input event stream and
produces a single output stream is not sufficient for tackling dataflow applications,
however. In general, actors in a dataflow process network might have more than one
input and possibly also more than one output. This is shown in Listing 3, which lists
the actor model considered in this article. An actor is fired repeatedly when data is
available on all of its input channels. Upon completion of the actor, data is written
to all of its output channels. Furthermore, the number of accesses to each input and
output channel may vary between firings, which is common for multimedia streaming
applications.

Listing 3. Structure of an actor’s FIRE function.

1 void fire() {
2 DOL read(input[1], buffer in[1], N in[1]);
3 DOL read(input[2], buffer in[2], N in[2]);
4 DOL read(input[3], buffer in[3], N in[3]);
5 execute;
6 DOL write(output[1], buffer out[1], N out[1]);
7 DOL write(output[2], buffer out[2], N out[2]);
8 }

The model of a multiple-input multiple-output GPC corresponding to the actor in
Listing 3 is illustrated in Figure 5. To model variable access rates, a data consumption

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:12 K. Huang et al.

P1 P2

data mem.
C1

ARM 0

″
′

′

P1 P2

″

Fig. 6. Intra-processor communication and corresponding MPA model.

P1

data mem.

C1

ARM 0
DMA controller

P2

data mem.

C1

DMA controller
ARM 1

bus

′
P1 C1 P2

″ ″′

′ ′ ′

Fig. 7. Inter-processor communication and corresponding MPA model.

curve ρ and a data production curve π are used. The data consumption curve ρ(e) =
[ρu(e), ρl(e)], e ∈ N0 specifies the maximum and minimum number of read accesses to
an input channel for e consecutive activations of the actor. The data production curve
π (e) = [πu(e), π l(e)], e ∈ N0 specifies the maximum and minimum number of write
accesses to an output channel for e consecutive activations of the actor. Note that while
consumption and production curves allow for analyzing dataflow process networks with
MPA, the increased generality of the model also incurs a loss of analysis capabilities.
As an example, techniques to analyze effects in systems with finite buffers (blocking
write, back-pressure) that are limited to synchronous dataflow [Thiele and Stoimenov
2009] cannot be applied any more when token consumption and production rates are
not constant.

To join multiple inputs, AND components (see Section 6.2) are used. The analysis of
this component has been described in Haid and Thiele [2007]. Since its interface still
only consists of arrival and service curves, the analysis of the entire system can be
performed in the same way as a network of single-input single-output GPCs.

5.3. Modeling Communication

Besides computation, also the communication between actors also needs to be con-
sidered in the generation of a system model. In MPARM, the implementation of
communication between actors located on the same tile (intra-processor communica-
tion) is different from the implementation of communication between actors located
on different tiles (inter-processor communication). These two cases are considered
next.

The left hand side of Figure 6 shows the implementation of intra-processor commu-
nication. The channel buffer is allocated in the local memory of the processor. After the
producer has written new data to the channel, the consumer can read the data as soon
as it is scheduled. This behavior can be modeled by chaining two GPCs, as shown in
Figure 6, in which fixed priority scheduling is assumed for illustration purposes.

Inter-processor communication involves four hardware resources, namely the two
processors where the producer and the consumer are located, the DMA controller
of the processor where the producer is located, and the interconnect, as shown in
Figure 7. The communication protocol is implemented in software as follows. The

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:13

producer puts data into its local memory and notifies the DMA controller to carry out
the transfer. Upon notification, the DMA controller reads the data and transfers them
to the local memory of the processor where the consumer is located (in both cases
using direct memory access that does not require any processor resources). From its
local data memory, the consumer can then read the data. This behavior is modeled by
chaining the two GPCs representing the actors with an intermediate GPC located on
the interconnect, as shown in Figure 7. Since the DMA controller just acts as the arbiter
for the interconnect, it is not modeled explicitly. In contrast, the interconnect itself is a
shared resource whose availability is modeled using a dedicated service curve.

5.4. Modeling Context-Switch Overhead

The previous sections showed how actors and their communication are modeled in
MPA. It remains to show how the overhead to context switch between actors can be
safely considered in the performance analysis. Basically, one can distinguish between
event-triggered scheduling policies (FP, EDF, FCFS), in which context switches occur
depending on the availability of data, and time-triggered scheduling (TDMA), in which
context switches occur on a regular time basis.

First, event-triggered scheduling is considered. In this case, a (safe) optimistic as-
sumption about the best case is that no context switch at all needs to be taken into
account for a task execution. In other words, the function FIRE in Listing 3 is continu-
ously repeated and executed without any interference from other tasks.

A (safe) pessimistic assumption about the worst case is that starting, as well as
completing a task (i.e., the execution of the function FIRE in Listing 3) results in a
context switch. Such a context switch involves the execution time of the call to the
underlying operating system, saving the context of the currently running task, and
restoring the context of the starting task. Note that the context-switch overhead is
only considered in the preempting task and not in the preempted one. As a result, even
if an actor is preempted several times, only two context switches are considered in its
worst-case execution time.

Context switches can thus be modeled by adding the worst-case context-switch time
Tcontext to the upper workload curves of all actors, while the lower workload curves do
not need to be modified. Formally, the workload curve γ̃ , including the overhead for
context switches, is thus related to the original workload curve γ by:

γ̃ u(e) = γ u(e) + 2 · e · Tcontext γ̃ l(e) = γ l(e). (13)

In TDMA scheduling, context switches can be simply modeled by reducing the length
of the timeslots by a lower and an upper bound on the context-switch time [Wandeler
and Thiele 2006b]. Contrary to event-triggered scheduling in which the context-switch
overhead is modeled in the workload curves of actors, the service curves representing
the different slots are modified in TMDA scheduling.

6. ANALYSIS MODEL GENERATION

The seamless integration of performance analysis into the MPSoC design flow requires
the generation of performance analysis models. Automating the analysis model gener-
ation is highly desirable: On the one hand, models for real systems have a complexity
that makes their generation a tedious, error-prone process if done manually. On the
other hand, usually different implementation alternatives need to be analyzed for a de-
sign, each requiring its own analysis model. This, of course, also applies to automated
design space exploration.

Unfortunately, analysis model generation is not a straightforward source-to-source
transformation. First, there is not a simple one-to-one relationship between the system
specification and the analysis model components and their interaction. Second, MPA

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:14 K. Huang et al.

models themselves are parallel but are evaluated in a sequential manner, due to their
sequential implementation as Matlab scripts.

The proposed approach splits the model generation into two phases. First, an anal-
ysis metamodel is generated representing the data dependencies of actors in the
dataflow process network and the mapping of the application onto an architecture. The
metamodel contains only elements that are common to formal performance analysis
methods and is thus independent of any specific analysis method. In the second phase,
a code generator refines the metamodel using method-specific abstractions and gener-
ates the corresponding code.

These two phases are now described in the context of the DOL design flow. After DOL
specifications have been translated into the analysis metamodel, code for the Matlab
MPA toolbox [Wandeler and Thiele 2006c] is created based on this model. Note that
the modular structure of the model generation allows for a simple extension towards
a generic generation principle. At the front end, different kinds of system specifica-
tions could be translated into the analysis metamodel. At the back end, different code
generators could be implemented to target other analysis methods, such as SymTA/S,
MAST, or timed automata. The viability of such an approach has been demonstrated
in Perathoner et al. [2009], in which several systems have been manually modeled
using these analysis methods for comparison purposes. Also note that only the front
end needs to be adjusted to extend the framework to a new MPSoC platform (at least
as long as this platform is in the modeling scope of the back-end analysis method).

6.1. Metamodel Generation

The first phase of model generation is to transform a DOL specification consisting of
an application, architecture, and mapping specification into the analysis metamodel,
which is saved as an XML file, as shown in Listing 4. This model contains all the infor-
mation required for analyzing the performance of a system, afterwards. The proposed
metamodel can be viewed as a directed graph M = (V, E). The set of vertices V is a
union VP

⋃
VAND, where VP is the set of processing components to model computation

and communication, and VAND is the set of abstract AND components [Haid and Thiele
2007; Jersak et al. 2005] for modeling the activation scheme of processing components.
(We use AND components for illustration purposes in this article. Abstract OR compo-
nents could be applied similarly, depending on the semantics of an actor). The set of
edges E represents event streams (connection elements in XML). All the elements of
M can be annotated with parameters relevant for performance analysis. In particu-
lar, the mapping is conveyed by annotating processing components with the necessary
binding and scheduling parameters; see lines 9–14 in Listing 4.

Listing 4. Snippet of analysis metamodel XML.

1 <pjd name="P1 trigger" period="200000" jitter="1000000"/>
2 <sink name="P3 sink"/>
3 <task name="P1" bcet="27487" wcet="29668"
4 workload lower="27487;54984;82481;110033;139359;167842"
5 workload upper="29668;58096;86569;115042;143515;171982"/>
6 ...
7 <connection from="P1" to="C1"/>
8 <connection from="C1" to="P2"/>
9 <resource name="processor 1" bandwidth="1.0000">

10 <fp preemptive="true">
11 <priority value="1"><binding task="P3"/></priority>

12 <priority value="2"><binding task="P1"/></priority>

13 </fp>

14 </resource>

15 ...

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:15

b3

P1
α

α

C1 P2

C2P3
’

b4

b6

b7

b1

b2b8b5

Fig. 8. MPA model with nested cyclic dependencies.

To construct metamodel M, an abstract processing component is instantiated for
each actor in the dataflow process network. Processes with multiple inputs are modeled
by inserting abstract AND components. The modeling of inter-process communication
depends on the binding. If a channel is bound to a shared interconnect, as shown
in Figure 7, a corresponding processing component is instantiated. Otherwise, the
associated processes are directly connected.

6.2. MPA Code Generation

The second phase of model generation is the creation of a model that is specific to the
chosen performance analysis method and is based on the metamodel that has been
previously described. More precisely, the metamodel needs to be transformed, such
that it can be analyzed by a tool implementing the particular analysis method. In our
design flow, the Matlab MPA toolbox [Wandeler and Thiele 2006c] is targeted.

The MPA code generation itself consists of two steps. First, the metamodel is ex-
pressed using the MPA specific abstractions. Event streams are replaced by arrival
curves; processing components by GPCs; and the mapping information is expressed
using service curves, as shown in Figure 3. The result of this first step is a graph whose
vertices are GPCs and whose edges are arrival and service curves. In a second step, the
sequential Matlab script implementing this graph is generated. Basically, this can be
done by performing a topological sort on the graph. This is limited to acyclic directed
graphs, but MPA models may contain cycles that either contain event streams (ar-
rival curves) only or both event streams (arrival curves) and resource streams (service
curves). In this article, we do not consider the first case that corresponds to feed-
back loops in the dataflow process network, because their analysis is an active area
of research [Thiele and Stoimenov 2009]. An example for the second case is shown in
Figure 8, which corresponds to the example shown in Figure 2 with reversed priori-
ties: GPC C1, C2, and P2 form an inner cycle because the input resource stream of C1
depends on C2, and the input event stream of C2 is provided by C1 via P2. All GPCs,
together, form the outer cycle, where the input resource stream of P1 depends on P3,
and the input event stream of P3 originates from P1 and traverses all other GPCs.
Note that both priority configurations are reasonable. The configuration shown in Fig-
ure 8 ensures that data that is already in the system is handled with higher priority
than newly arriving data. In contrast, the configuration in Figure 2(b) ensures that
the processing of data starts as soon as it is available. To resolve cyclic dependencies,
fixed-point iterations are applied. The correctness of the approach has been formally
proven in Jonsson et al. [2008].

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:16 K. Huang et al.

Algorithm 1 Greedy algorithm for Matlab code generation.
1: let V ′ = VP � VP is the set of all processing components
2: let V ′′ ⊂ VP : ∀v ∈ V ′′ both event and resource streams are available
3: procedure GREEDY GEN(V ′, V ′′)
4: while V ′ = ∅ do
5: while V ′′ = ∅ do
6: get gi, j ∈ V ′′; generate Matlab code with (αgi, j , βgi, j)
7: if ∃ gi+1, j then � gi+1, j is the successor of gi, j with respect to β

8: mark βgi+1, j available
9: if αgi+1, j available then V ′′ = V ′′ ⋃ {gi+1, j} end if
10: end if
11: if ∃ gi, j+1 then � gi, j+1 is the successor of gi, j with respect to α

12: mark αgi, j+1 available
13: if βgi , j+1 available then V ′′ = V ′′ ⋃ {gi, j+1} end if
14: end if
15: V ′′ = V ′′ \ {gi, j}; V ′ = V ′ \ {gi, j}
16: end while
17: if V ′ = ∅ then � cyclic dependency detected
18: get gi, j whose event stream is available
19: find gi, j+x whose resource stream is available
20: βgi, j = βgi, j+x

21: V ′′ = V ′′ ⋃ {gi, j}
22: construct fixed point iteration procedure for (αgi, j , βgi, j+x)
23: call GREEDY GEN(V ′, V ′′) � recursively create code for inner cycles
24: end if
25: end while
26: end procedure

Listing 5. Matlab script for the MPA model in Figure 8 exhibiting cyclic dependencies.

1 % i n i t i a l i z e a l l variables
2 b4 = b3 ;
3 b4 upper = b4 (1) ; b4 lower = b4 (2) ;
4 b4 upper last = rtcuplus (b4 upper) ; b4 lower last = rtcuplus (b4 lower) ;
5 conv b4 = fa l se ;
6 for i t b4 = (1 :MAX ITERATIONS)
7 [P1 out b5 P1 delay P1 buf] = rtcpgc (P1 src out , b4 , P1 demand) ;
8 b7 = b6 ;
9 b7 upper = b7 (1) ; b7 lower = b7 (2) ;

10 b7 upper last = rtcuplus (b7 upper) ; b7 lower last = rtcuplus (b7 lower) ;
11 conv b7 = fa l se ;
12 for i t b7 = (1 :MAX ITERATIONS)
13 [C1 out b8 C1 delay C1 buf] = rtcpgc (P1 out , b7 , C1 demand) ;
14 [P2 out b2 P2 delay P2 buf] = rtcpgc (C1 out , b1 , P2 demand) ;
15 [C2 out b7 C2 delay C2 buf] = rtcpgc (P2 out , b6 , C2 demand) ;
16 b7 upper = b7 (1) ; b7 lower = b7 (2) ;
17 i f ((b7 upper == b7 upper last) && (b7 lower == b7 lower last))
18 conv b7 = true ; break ;
19 end
20 b7 upper last = rtcuplus (b7 upper) ;
21 b7 lower last = rtcuplus (b7 lower) ;
22 end
23 % i f f ixed point was not reached , report error and e x i t
24 [P3 out b4 P3 delay P3 buf] = rtcpgc (C2 out , b3 , P3 demand) ;
25 b4 upper = b4 (1) ; b4 lower = b4 (2) ;
26 i f ((b4 upper == b4 upper last) && (b4 lower == b4 lower last))
27 conv b4 = true ; break ;
28 end
29 b4 upper last = rtcuplus (b4 upper) ; b4 lower last = rtcuplus (b4 lower) ;
30 end
31 % i f f ixed point was not reached , report error and e x i t

The pseudocode of the greedy algorithm used for model generation is shown in
Algorithm 1. First, the set V ′′ is computed containing those GPCs whose arrival curves
and service curves are both available. Then, iteratively, a random GPC is chosen from
V ′′, and the corresponding Matlab statement is generated (line 6). Afterwards, the
output arrival and service curve are marked to be available (lines 8 and 12, respec-
tively), and subsequent GPCs are added to V ′′ if both their arrival and service curves
become available. If a cyclic dependency is detected (line 17), a fixed-point iteration
routine is constructed. Within this routine, cycles are resolved by recursively calling

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:17

the algorithm (line 23). The algorithm continues until the Matlab statements for all
GPCs have been generated.

As an example, the Matlab script generated by applying Algorithm 1 to the
MPA model with nested cyclic dependencies in Figure 8 is shown in Listing 5.
Lines 12–23 and 6–31 resolve the inner (C1, P2, and C2) and outer (all GPCs involved)
cyclic dependencies, respectively. The Matlab statements for the GPCs P1, C1, P2, C2,
and P3 are in lines 7, 13–15, and 24, respectively.

7. ANALYSIS MODEL CALIBRATION

In a compositional approach, the goal of model calibration is the determination of
bounds on the best-case and worst-case behavior of all system components and the
environment. For some parameters, this is a simple task. The timing behavior of the
input stream(s), the clock frequencies of the architectural components, and scheduling
parameters can be directly taken from the application, architecture, and mapping
specification, respectively. These parameters are directly reflected in the input arrival
curves and the service curves of an MPA model. The calibration of the GPCs modeling
the application is more involved. The workload curves γ , data consumption curves ρ,
and data production curves π depend, in general, on the processed data stream, the
architecture, and the mapping of the application onto the architecture.

One way to obtain the parameters for formal system-level performance analysis
are formal component-level analysis methods. Formal methods provide safe bounds on
component behavior, such as the worst-case and best-case execution time of an actor
[Wilhelm et al. 2008] or the workload of an actor [Maxiaguine et al. 2004]. Unfortu-
nately, this class of methods suffers from a restricted scope and often cannot be com-
pletely automated. Manually providing the required information increases the overall
modeling effort and decreases the level of automation. The main advantage of formal
methods is their safeness, that is, worst-case or best-case bounds can be guaranteed,
and, therefore, the performance analysis results can be used for the validation of hard
real-time systems.

An alternative approach is simulation. Calibration by simulation cannot guarantee
safe bounds unless exhaustive test patterns are used. Because the complexity of the
application and architecture often prohibits exhaustive simulation of the entire system,
a compositional approach, as advocated in this article, needs to be applied. This means
that the individual (simple) components are exhaustively simulated in isolation, and
the (complex) global interferences and interactions are analyzed formally by means of
a modular method, such as MPA.

In addition, calibration by simulation can be used to estimate bounds for a restricted
set of behaviors, as characterized by the variability curves (γ, ρ, π). This is facilitated
by two properties of the variability curves used in MPA. First, the curves obtained by
a single simulation run do not only bound the specific behavior observed in that run
but cover an entire set of behaviors. Second, results of multiple simulation runs can
be easily combined by taking the minimum and maximum of the curves obtained in
different runs. Compared to formal methods, simulation usually provides tighter (but
possibly unsafe) bounds and can be performed completely automated. Due to these
reasons, we use simulation for calibration in the experimental section of this article.
Following, some of the practical details of this approach are discussed.

7.1. Calibration Using Functional and Timed Simulation

The quantities that need to be obtained by simulation are a) workload curves of compu-
tation and communication tasks γ , b) data production curves π , and c) data consump-
tion curves ρ. To create these curves, the accumulated workload and the accumulated
number of read-and-write accesses to each channel are logged during simulation for

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:18 K. Huang et al.

u

l

sa
fe

perio
dic

exte
nsio

n

sa
fe

bounds

fro
m

tra
cew

or
kl

oa
d

fo
r

an
y

e
co

ns
ec

ut
iv

e
ev

en
ts

γ
γ

γ

Fig. 9. Construction of workload curve from trace of accumulated workloads.

each individual actor. After simulation, a trace t of length N is available for each of
these quantities. We assume that the traces contain safe upper and lower bounds on
the workload, data production, and data consumption for up to L consecutive actor
activations.

Based on this assumption, safe upper and lower bounds of the workload for up to L
consecutive events can be obtained by sliding windows of size 1 to L across the trace of
accumulated workloads, such that

γ u(e) = max
0≤n<N−e

{
t[n + e] − t[n]

}
0 ≤ e ≤ L, (14)

γ l(e) = min
0≤n<N−e

{
t[n + e] − t[n]

}
0 ≤ e ≤ L. (15)

These variability curves can be safely extended to intervals greater than L by as-
suming that all best-case and worst-case quantities for intervals up to L activations
in any trace have been encountered. Every interval larger than L can now be parti-
tioned into 	e/L
 intervals of length L and the remaining length e % L. As a result,
safe bounds for intervals greater than L can be derived by periodically extending the
obtained curve segments, as shown in Figure 9. Note that even though the bounds are
periodically extended, this does not imply that a stream bounded by these curves needs
to be periodic.

γ (e) = 	e/L
 · γ (L) + γ (e % L) e > L. (16)

Similarly, data production curves π and data consumption curves ρ can be constructed.
Due to the determinism of dataflow process networks, traces of timing-independent

parameters can be obtained from functional simulation. In particular, this applies to
the workload curves of communication tasks, data production curves, and data con-
sumption curves. The workload curves for actors are obtained from timed simulation.
In the following experiments, estimations for the workload curves of actors, as well as
context-switch times, are determined based on traces obtained by timed simulation on
MPARM. As mentioned already, safe bounds could be obtained by leveraging formal
component-level analysis methods.

8. EXPERIMENTS

In this section, we use a prototype implementation of the DOL design flow to analyze
three different applications: a producer-consumer (P-C) example, and two streaming
applications, namely a Motion-JPEG (MJPEG) decoder and a wave field synthesis
(WFS) application. All these applications run on top of the MPARM [Benini et al. 2005]
cycle-accurate simulator.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:19

Table I. Java Code Size of Different Parts of the DOL Design Flow

Part of design flow Lines of code
DOL representation of system specifications 6200
functional simulation generator 4100
MPARM code generator 2100
analysis meta-model generator 700
log-file analysis of functional and timed simulation 1200
MPA Matlab script generator 4300

(a) (b)

Fig. 10. MPA models of case study applications. (a) 5-stage MJPEG application mapped onto a 3-tile MPARM
platform. (b) WFS application mapped onto a 2-tile MPARM platform.

The DOL and the analysis model generation have been implemented in Java. The
packages are available for download at http://www.tik.ee.ethz.ch/∼shapes. To give an
indication about the size of the prototype implementation, Table I shows the code size
of different parts of the implementation.

8.1. Case Study Applications

Producer-Consumer. The producer-consumer example is depicted in Figure 2(a) and
its corresponding MPA model in Figure 2(b). The producer P1 generates a stream of
floating point numbers, which pass through P2 and are consumed by P3.

MJPEG Decoder. The MJPEG decoder decompresses a movie stream by applying
JPEG decompression to each individual frame. Because of the inherent parallelism in
the JPEG algorithm, the decoder executes in a pipelined fashion with five stages, each
implemented by an actor, as shown in Figure 10(a). The first and last stages are the
splitting of a stream into frames (ss) and the merging of frames back to a stream (ms),
respectively. The variable length decoding and splitting of frames into macroblocks
forms the second stage (sf). The zigzag scan, inverse quantization, and the inverse dis-
crete cosine transform form the third stage (zii). Combining macroblocks back to frames
forms the fourth stage (mf). The application is mapped onto a 3-tile MPARM system,
resulting in the MPA model depicted in Figure 10(a). The used bitstream consists of 31
frames encoded in the QVGA (320×240) YUV 444 format. In the used implementation,
control parameters, Huffman and quantization tables, as well as image blocks, are
transmitted over the same channels, resulting in variable consumption and production
rates for actors.

Wave Field Synthesis. By using an array of loudspeakers and audio beamforming
techniques, WFS allows for reproducing an acoustic sound field whose perceived origin
is not restricted to the position of physical loudspeaker boxes. The MPA model of a WFS
application that renders a sound source using 16 loudspeakers and that is mapped
onto a 2-tile MPARM system is shown in Figure 10(b). The source actor reads a (mono)
audio signal and the control actor reads the beamforming coefficients from a digital

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:20 K. Huang et al.

Table II. Duration of Analysis Model Generation and Calibration

Step Duration
P–C MJPEG WFS

model
calibration
(one-time
effort)

functional simulation generation 22 s 42 s 35 s
functional simulation 0.2 s 3.6 s 2.4 s
synthesis (generation of binary) 2 s 4 s 3 s
simulation on MPARM 23 s 13550 s 740 s
log-file analysis and back-annotation 1 s 12 s 3 s

model generation 1 s 1 s 1 s
performance analysis based on generated model 0.2 s 2.5 s 1.4 s

Note: Measured on a 1.86 GHz Intel Pentium Mobile machine with 1 GB of RAM.

interface. The signal processing takes place in the compute actors, whereby each actor
synthesizes the signals for eight channels. The computed signals are communicated to
the loudspeaker actor, which drives the D/A converters. The processing is done in tokens
of 32 samples, each represented as a single-precision 32-bit floating point number. The
sampling rate is 48 kHz.

8.2. Results

The experiments are used to evaluate the proposed approach with respect to the time
needed to obtain results (efficiency) and the quality of the obtained bounds.

Efficiency. Table II lists the durations of the single steps to generate, calibrate, and
evaluate the MPA models of the producer-consumer, MJPEG, and WFS application.

The table shows that calibration is always the step that takes by far the most time,
whereas model generation and performance analysis take a matter of seconds. Based
on Table II, one can draw the following conclusions.

First, evaluating a system’s performance using cycle-accurate simulation is by sev-
eral orders of magnitude slower than formal performance analysis. This justifies the
proposed approach of integrating a formal performance analysis in the design cycle, use
formal performance analysis during design space exploration, and restrict the usage of
cycle-accurate simulation to the calibration of the formal model.

Second, depending on the complexity of the application, the elapsed simulation time
varies in a range from seconds to hours. Contrarily, the time used for generating the
analysis model and for performing the analysis are almost identical for all the appli-
cations. This again shows the importance of integrating formal performance analysis
into the MPSoC design cycle.

Third, even though calibration is completely automated, it takes a considerable time.
Thus, manual calibration at the same level of detail would be a very difficult and a
time-consuming endeavor. Similar observations can be made with respect to model
generation. This supports our claim that automated model generation and calibration
are essential when compositional performance analysis is applied for analyzing real
systems.

Fourth, calibrating the system model for each new binding and scheduling alternative
during design space exploration would be prohibitively slow, mainly due to the long
runtime of the timed simulation. Due to the compositional approach, however, one can
collect all the parameters prior to design space exploration.

Table III shows the size of the generated Matlab scripts for all three considered
applications. One can draw the following conclusions. As the complexity of the system
grows, the analysis model is more involved, and the size of the model is accordingly
larger. In addition, when fixed-point iteration needs to be applied because of cyclic
resource dependencies, the size of the generated Matlab script increases considerably.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:21

Table III. Code Size of Matlab Scripts Generated for the Case Study Applications

Application Without cyclic dep. With cyclic dep.

P–C lines of code 77 99
code size (bytes) 3204 3780

MJPEG lines of code 117 161
code size (bytes) 15689 16905

WFS lines of code 116 138
code size (bytes) 7725 8301

Note: The column labeled “without cyclic dep.” refers to the MPA models depicted
in Figure 2(b) and Figure 10. The column labeled “with cyclic dep.” refers to the
same MPA models but with reversed priorities. Refer to Table IV for details about
the two different configurations.

Table IV. Comparison of Worst-Case Values Observed During Simulation and Bounds Computed Using MPA

Simulation MPA MPA† Simulation MPA
Actor proc. pr. del. buf. del. buf. del. buf. pr. del. buf. del. buf.
p–c.p1 1 1 143 4 208 5 280 5 2 313 4 534 6
p–c.p3 1 2 276 5 363 5 788 9 1 36 1 48 1
p–c.p2 2 1 102 2 143 3 285 4 1 68 2 150 3
mjpeg.ss 1 1 16 2 52 6 148 6 2 23 2 111 6
mjpeg.ms 1 2 80 1 117 4 338 8 1 23 1 38 1
mjpeg.sf 2 1 266 5 287 6 388 6 2 344 5 465 6
mjpeg.mf 2 2 298 3 488 4 734 7 1 36 1 51 1
mjpeg.zii 3 1 695 6 746 6 908 7 1 600 5 812 7
wfs.ctrl 1 1 78 2 109 2 152 2 3 294 2 590 3
wfs.src 1 2 199 3 219 3 280 3 2 193 2 279 2
wfs.ls 1 3 2465 6 5357 10 5697 11 1 2049 4 5861 8
wfs.comp1 2 1 1999 7 3389 7 3472 7 2 3123 10 6148 15
wfs.comp2 2 2 3619 13 4895 13 5049 13 1 1872 6 4122 9

Note: The column labeled MPA† shows the bounds when using best-/worst-case execution times for actor
characterization, whereas the other (tighter) bounds are computed using workload curves. Delays (del.) are
given in 103 processor cycles and backlogs (buf.) in tokens. The table shows results for two mappings of
each application whereby the MPA model of the right one exhibits cyclic dependencies. The columns labeled
“proc.” and “pr.” indicate the processor to which an actor is bound and its priority.

Clearly, manually constructing analysis models for such systems becomes error-prone,
and, therefore, automated generation is desirable.

Quality. Table IV compares several bounds derived by MPA to the actual (average-
case behavior) quantities observed during simulation of the considered systems. Note
that an accurate, quantitative evaluation of the quality (tightness) of the bounds would
require exhaustive simulation of these systems covering all corner cases. Unfortunately,
this is not feasible, because finding and simulating exhaustive test patterns that cover
all possible corner cases and interference through joint resources takes too much time.
Still, it can be argued that the bounds are in a reasonable range typical for compo-
sitional performance analysis. Differences in the same range have been observed for
several systems, for instance, in Perathoner et al. [2009]. There are two main reasons
for these differences. The first is that several operators in the formal performance anal-
ysis do not yield tight bounds. The second is that the timed simulations only exhibit the
worst-case and best-case behavior at component-level but not at system level. Finally,
note that for the metrics in Table IV, MPA can only be used to provide upper bounds. If
other metrics such as resource utilization or throughput were considered, lower bounds
could also be computed using MPA.

9. CONCLUSIONS

The distributed operation layer (DOL) MPSoC software design flow targeted at the
development of real-time streaming applications has been presented in this article. For

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

8:22 K. Huang et al.

applications expressed as dataflow process networks, this design flow allows for the
automatic creation of implementation, as well as a formal performance analysis model
for system validation. Because the same system specification is used as the basis for
software synthesis and for generating the analysis model, the gap between high-level
analysis model and system implementation is kept small. By calibrating the generated
model using simulation, an analysis model can be generated that faithfully models
the real system, such that accurate best-case/worst-case bounds for system properties
can be obtained. The effectiveness of the proposed design flow has been illustrated
for a video (MJPEG) and an audio application (wave field synthesis) executing on a
multiprocessor ARM architecture.

REFERENCES

BALSAMO, S., MARCO, A. D., INVERARDI, P., AND SIMEONI, M. 2004. Model-based performance prediction in software
development: A survey. IEEE Trans. Softw. Eng. 30, 5, 295–310.

BENINI, L., BERTOZZI, D., ALESSANDRO, B., MENICHELLI, F., AND OLIVIERI, M. 2005. MPARM: Exploring the multi-
processor soc design space with SystemC. J. VLSI Signal Process. 41, 169–182.

BLACK, B. AND SHEN, J. P. 1998. Calibration of microprocessor performance models. Comput. 31, 5, 59–65.
CHAKRABORTY, S., KÜNZLI, S., AND THIELE, L. 2003. A general framework for analyzing system properties in

platform-based embedded system design. In Proceedings of the Design, Automation and Test in Europe
(DATE). 190–195.

DENSMORE, D., SANGIOVANNI-VINCENTELLI, A., AND PASSERONE, R. 2006. A platform-based taxonomy for ESL
design. IEEE Design Test Comput. 23, 5, 359–374.

GERSTLAUER, A., HAUBELT, C., PIMENTEL, A. D., STEFANOV, T., GAJSKI, D. D., AND TEICH, J. 2009. Electronic
system-level synthesis methodologies. IEEE Trans. Comput.-Aid. Design Integr. Circuits Syst. 28, 10,
1517–1530.

GONZÁLEZ HARBOUR, M., GUTIÉRREZ GARCÍA, J. J., PALENCIA GUTIÉRREZ, J. C., AND DRAKE MOYANO, J. M. 2001. MAST:
Modeling and analysis suite for real time applications. In Proceedings of the Euromicro Conference on
Real-Time Systems. 125–134.

HAID, W., KELLER, M., HUANG, K., BACIVAROV, I., AND THIELE, L. 2009. Generation and calibration of compositional
performance analysis models for multiprocessor systems. In Proceedings of the International Conference
on Systems, Architectures, Modeling and Simulation (IC-SAMOS). 92–99.

HAID, W. AND THIELE, L. 2007. Complex task activation schemes in system level performance analysis. In
Proceedings of the International Conference on HW/SW Codesign and System Synthesis (CODES/ISSS).
173–178.

HENIA, R., HAMANN, A., JERSAK, M., RACU, R., RICHTER, K., AND ERNST, R. 2005. System level performance
analysis — The SymTA/S approach. IEE Proc.: Comput. Digital Tech. 152, 2, 148–166.

JERSAK, M., RICHTER, K., AND ERNST, R. 2005. Performance analysis for complex embedded systems. Int. J.
Embedd. Syst. 1, 1–2, 33–49.

JONSSON, B., PERATHONER, S., THIELE, L., AND YI, W. 2008. Cyclic dependencies in modular performance analysis.
In Proceedings of the International Conference on Embedded Software (EMSOFT). 179–188.

KAHLE, J., DAY, M., HOFSTEE, H., JOHNS, C., MAEURER, T., AND SHIPPY, D. 2005. Introduction to the cell multi-
processor. IBM J. Res. Develop. 49, 4/5, 589–604.

KAHN, G. 1974. The semantics of a simple language for parallel programming. In Proceedings of the IFIP
Congress. 471–475.

KANGAS, T., KUKKALA, P., ORSILA, H., SALMINEN, E., HÄNNIKÄINEN, M., AND HÄMÄLÄINEN, T. D. 2006. UML-based
multiprocessor soc design framework. ACM Trans. Embedd. Comput. Syst. 5, 2, 281–320.

KÜNZLI, S., POLETTI, F., BENINI, L., AND THIELE, L. 2006. Combining simulation and formal methods for system-
level performance analysis. In Proceedings of the Design, Automation and Test in Europe (DATE).
236–241.

LAHIRI, K., RAGHUNATHAN, A., AND DEY, S. 2001. System-level performance analysis for designing on-chip
communication architectures. IEEE Trans. Comput.-Aid. Design Integr. Circuits Syst. 20, 6, 768–783.

LAMPKA, K., PERATHONER, S., AND THIELE, L. 2010. Analytic real-time analysis and timed automata: A hy-
brid methodology for the performance analysis of embedded real-time systems. Des. Autom. Embedd.
Syst. 14, 3, 193–227.

LE BOUDEC, J.-Y. AND THIRAN, P. 2001. Network Calculus — A Theory of Deterministic Queuing Systems for the
Internet. Lecture Notes in Computer Science, vol. 2050. Springer-Verlag, Berlin, Germany.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

Embedding Formal Performance Analysis into the Design Cycle of MPSoCs 8:23

LEE, E. A. AND MESSERSCHMITT, D. G. 1987. Synchronous data flow. Proc. IEEE 75, 9, 1235–1245.
LEE, E. A. AND PARKS, T. M. 1995. Dataflow Process Networks. Proc. IEEE 83, 5, 773–799.
MAXIAGUINE, A., KÜNZLI, S., AND THIELE, L. 2004. Workload characterization model for tasks with variable

execution demand. In Proceedings of the Design, Automation and Test in Europe (DATE). 1040–1045.
PAOLUCCI, P., JERRAYA, A., LEUPERS, R., THIELE, L., AND VICINI, P. 2006. SHAPES: A tiled scalable software

hardware architecture platform for embedded systems. In Proceedings of the International Conference
HW/SW Codesign and System Synthesis (CODES/ISSS). 167–172.

PELLIZZONI, R. AND CACCAMO, M. 2007. Toward the predictable integration of real-time COTS-based systems.
In Proceedings of the Real-Time Systems Symposium (RTSS). 73–82.

PERATHONER, S., REIN, T., THIELE, L., LAMPKA, K., AND ROX, J. 2010. Modeling structured event streams in
system level performance analysis. In Proceedings of the ACM Conference on Languages, Compilers and
Tools for Embedded Systems (LCTES).

PERATHONER, S., WANDELER, E., THIELE, L., HAMANN, A., SCHLIECKER, S., HENIA, R., RACU, R., ERNST, R., AND

GONZÁLEZ HARBOUR, M. 2009. Influence of different abstractions on the performance analysis of dis-
tributed hard real-time systems. Des. Autom. Embedd. Syst. 13, 1, 27–49.

PETRIU, D., SHOUSHA, C., AND JALNAPURKAR, A. 2000. Architecture-based performance analysis applied to a
telecommunication system. IEEE Trans. Softw. Eng. 26, 11, 1049–1065.

PIMENTEL, A., ERBAS, C., AND POLSTRA, S. 2006. A systematic approach to exploring embedded system archi-
tectures at multiple abstraction levels. IEEE Trans. Comput. 55, 2, 99–112.

PIMENTEL, A. D., THOMPSON, M., POLSTRA, S., AND ERBAS, C. 2008. Calibration of abstract performance models
for system system-level design space exploration. J. Signal Process. Syst. 50, 2, 99–114.

RTEMS STEERING COMMITTEE. 2010. RTEMS. http://www.rtems.com.
THIELE, L., BACIVAROV, I., HAID, W., AND HUANG, K. 2007. Mapping-applications to tiled multiprocessor embedded

systems. In Proceedings of the International Conference on Application of Concurrency to System Design
(ACSD). 29–40.

THIELE, L. AND STOIMENOV, N. 2009. Modular performance analysis of cyclic dataflow graphs. In Proceedings
of the International Conference on Embedded Software (EMSOFT). 127–136.

THIES, W., KARCZMAREK, M., AND AMARASINGHE, S. 2002. StreamIt: A language for streaming applications. In
Proceedings of the 11th International Conference on Compiler Construction. 179–196.

VIEHL, A., SCHÖNWALD, T., BRINGMANN, O., AND ROSENSTIEHL, W. 2006. Formal performance analysis and sim-
ulation of UML/SysML models for ESL design. In Proceedings of the Design, Automation and Test in
Europe (DATE). 242–247.

WANDELER, E. AND THIELE, L. 2006a. Interface-based design of real-time systems with hierarchical scheduling.
In Proceedings of the Real-Time and Embedded Technology and Applications Symposium (RTAS). 243–
252.

WANDELER, E. AND THIELE, L. 2006b. Optimal TDMA time slot and cycle length allocation for hard real-time
systems. In Proceedings of the Asia and South Pacific Conference on Design Automation (ASP-DAC).
479–484.

WANDELER, E. AND THIELE, L. 2006c. Real-Time Calculus (RTC) toolbox. http://www.mpa.ethz.ch/Rtctoolbox.
WANDELER, E., THIELE, L., VERHOEF, M., AND LIEVERSE, P. 2006. System architecture evaluation using modular

performance analysis: A case study. Int. J. Softw. Tools Technol. Transfer 8, 6, 649–667.
WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N., THESING, S., WHALLEY, D., BERNAT, G., FERDINAND,

C., HECKMANN, R., MITRA, T., MUELLER, F., PUAUT, I., PUSCHNER, P., STASCHULAT, J., AND STENSTRÖM, P.
2008. The worst-case execution time problem — Overview of methods and survey of tools. ACM Trans.
Embedd. Comput. Syst. 7, 3, 36:1–36:53.

WOODSIDE, M. 2007. From annotated software designs (UML SPT/MARTE) to model formalisms. Lecture
Notes in Computer Science, vol. 4486. Springer-Verlag, Berlin, Germany, 429–467.

Received February 2009; revised January, October 2010; accepted October 2010

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 8, Publication date: March 2012.

	1. INTRODUCTION
	2. RELATED WORK
	3. DOL PROGRAMMING ENVIRONMENT

